Farbfleck könnte autonom fahrende Fahrzeuge verwirren
Forscher senden Weckruf an Automobilindustrie
Tübingen – Ein Farbmuster auf einem T-Shirt, als Heckscheibenaufkleber oder als Emblem auf einer Einkaufstüte könnte für selbstfahrende Autos ein Problem darstellen – ein kleines Muster, das so viele Störsignale auslöst, dass es zum Sicherheitsrisiko wird. „Wir haben drei, vielleicht vier Stunden gebraucht, um das Muster zu erstellen – das ging ganz schnell,“ sagt Anurag Ranjan, Doktorand in der Abteilung für Perzeptive Systeme am Max-Planck-Institut für Intelligente Systeme (MPI-IS) in Tübingen. Er ist der Erstautor der Publikation „Attacking Optical Flow“, ein gemeinsames Forschungsprojekt der Abteilung für Perzeptive Systeme und der Forschungsgruppe für Autonomes Maschinelles Sehen am MPI-IS und der Universität Tübingen. Die Publikation ist auf arXiv verfügbar und wird bei der führenden internationalen Konferenz im Bereich Maschinelles Sehen präsentiert, der International Conference on Computer Vision ICCV, die am 27. Oktober in Seoul beginnt.
Die Gefahr, dass aktuell auf dem Markt verfügbare Serienfahrzeuge betroffen sind, ist gering. Dennoch informierten die Forscher vorsichtshalber einige Automobilhersteller, die derzeit selbstfahrende Modelle entwickeln. Sie setzten sie von dem Risiko in Kenntnis, damit sie bei Bedarf zeitnah reagieren können.
In ihrer Forschungsarbeit prüften Anurag Ranjan und seine Kollegen Joel Janai, Andreas Geiger und Michael J. Black die Robustheit einer Reihe verschiedener Algorithmen zur Bestimmung des sogenannten optischen Flusses. Derartige Systeme werden in selbstfahrenden Autos, in der Robotik, Medizin, bei Videospielen und in der Navigation verwendet, um nur einige wenige Einsatzbereiche zu nennen. Der optische Fluss beschreibt die Bewegung in einer Szene, die von den Bordkameras erfasst wird. Jüngste Fortschritte im Bereich des maschinellen Lernens haben zu schnelleren und besseren Verfahren beim Berechnen von Bewegung geführt. Die Forschung der Tübinger Wissenschaftler zeigt jedoch, dass derartige Verfahren anfällig sind, wenn Störsignale im Spiel sind: zum Beispiel ein einfaches, buntes Muster, das in die Szene platziert wird. Selbst wenn sich das Muster nicht bewegt, kann es dazu führen, dass tiefe neuronale Netze, wie sie heute in großem Maße zur Flussberechnung eingesetzt werden, falsch rechnen: das Netzwerk kalkuliert plötzlich, dass sich große Teile der Szene in die falsche Richtung bewegen.
Mehrmals haben Forscher*innen in der Vergangenheit bereits gezeigt, dass selbst winzige Muster neuronale Netze verwirren können. Zum Beispiel wurden dadurch Objekte wie Stoppschilder falsch klassifiziert. Die neue Tübinger Forschungsarbeit zeigt erstmals, dass auch Algorithmen zur Bestimmung der Bewegung von Objekten anfällig für derartige Angriffe sind. Bei der Verwendung in sicherheitskritischen Anwendungen wie in autonomen Fahrzeugen müssen diese Systeme jedoch hinsichtlich derartiger Angriffe „robust“ bzw. zuverlässig und sicher sein.
Selbst ein kleiner Fleck erzeugt große Wirkung
Ranjan und seine Kollegen arbeiten seit März vergangenen Jahres an dem Projekt „attacking optical flow“. Im Zuge ihrer Forschungsarbeit waren sie überrascht, dass selbst ein kleiner Fleck großes Chaos auslösen kann. Es reicht eine Größe von weniger als 1 % des Gesamtbilds aus, um das System anzugreifen. Die kleinste Störung verursachte, dass das System schwere Fehler bei seinen Berechnungen machte, die die Hälfte des Bildbereichs betrafen (siehe Abbildung). Je größer der Fleck, desto verheerender die Auswirkungen. „Dies ist bedenkliche, da das Flow-System in vielen Fällen die Bewegung der Objekten in der gesamten Szene gelöscht hat,“ erklärt Ranjan und weist auf ein Video hin, in dem das angegriffene System zu sehen ist. Man kann sich leicht vorstellen, welchen Schaden ein lahmgelegter Autopilot eines selbstfahrenden Autos bei hoher Geschwindigkeit verursachen kann.
Wie einzelne selbstfahrende Autos funktionieren ist ein wohl-gehütetes Geheimnis der jeweiligen Hersteller. Daher können Computer Vision Grundlagenforscher nur mutmaßen. „Unsere Arbeit soll die Hersteller von selbstfahrender Technologie wachrütteln, sie vor der potenziellen Bedrohung warnen. Wenn sie davon wissen, können sie ihre Systeme so trainieren, dass sie gegenüber derartigen Angriffen robust sind,“ sagt Michael J. Black, Direktor der Abteilung für Perzeptive Systeme am Max-Planck-Institut für Intelligente Systeme.
Möglicherweise ebenso wichtig wie der Hackerangriff selbst ist, dass es den Entwicklerteams der Automobilindustrie zeigt, wie man unter Verwendung einer sogenannten „zero flow“-Prüfung bessere optische Flussalgorithmen entwickeln kann. „Wenn wir dem System zwei identische Bilder zeigen und es keinerlei Bewegung zwischen den beiden gibt, sollte sich der optische Flussalgorithmus farblich überhaupt nicht verändern. Dies ist jedoch oft nicht der Fall, selbst ohne einen Angriff. Schon da fangen also die Probleme an. Hier müssen wir ansetzen, um zu beheben, was das Netz falsch macht“, erläutert Ranjan. Er und sein Team hoffen, dass ihre Forschungsarbeit dazu beiträgt, das Bewusstsein für die Problematik zu stärken, und dass Automobilhersteller derartige Angriffe ernst nehmen und ihre Systeme entsprechend anpassen, um sie weniger störanfällig zu machen.
- Project website: https://flowattack.is.tue.mpg.de
- Publication on ArXiv: https://arxiv.org/abs/1910.10053
- Youtube video: https://www.youtube.com/watch?v=FV-oH1aIdAI&feature=youtu.be
Press Contact:
Linda Behringer
Max Planck Institut for Intelligent Systems, Stuttgart, Germany
T: +49 711 689 3552
M: +49 151 2300 1111
linda.behringer@is.mpg.de
About us
At the Max Planck Institute for Intelligent Systems we aim to understand the principles of Perception, Action and Learning in Intelligent Systems.
The Max Planck Institute for Intelligent Systems is located in two cities: Stuttgart and Tübingen. Research at the Stuttgart site covers small-scale robotics, self-organization, haptic perception, bio-inspired systems, medical robotics, and physical intelligence. The Tübingen site focuses on machine learning, computer vision, robotics, control, and the theory of intelligence.
The Perceiving Systems department combines computer vision, machine learning, and computer graphics to train computers to understand humans and their behavior in images and video. The team’s unique approach begins with learning compact parametric models of 3D human shape and motion. We use these to extract and analyze human behavior in the context of 3D scenes. The department has approximately 45 staff and students and additional affiliated researchers. It operates unique 4D scanning facilities that produce highly accurate and detailed 3D meshes of the body, face, hands, and feet at 60 frames per second. The department also employs wearable motion capture suits, flying robots, and camera-based systems to record human movement.
The Autonomous Vision research group, which is based at the Max Planck Institute for Intelligent Systems in Tübingen and the University of Tübingen, addresses questions related to robustness as well as methods that enable high-capacity models (such as deep neuronal networks) to learn with a small amount of data. More specifically, the group’s research focuses on robust perception for autonomous agents, especially autonomous vehicles. Research activities range from sensor-based perception (3D reconstruction, motion estimation, object recognition) and holistic scene interpretation (3D lane and intersection estimation), to sensor engine control approaches.